1 research outputs found

    Electrospun Polyaniline-Reduced Graphene Oxide Composite Nanofibers Based High Sensitive Ammonia Gas Sensor

    Get PDF
    Ammonia is an important gas in many power plants and industrial processes so its detection is of extreme importance in environmental monitoring and process control due to its high toxicity. Ammonia’s threshold limit is 25 ppm and the exposure time limit is 8 h, however exposure to 35 ppm is only secure for 10 min. In this work a brief introduction to ammonia aspects are presented, like its physical and chemical properties, the dangers in its manipulation, its ways of production and its sources. The application areas in which ammonia gas detection is important and needed are also referred: environmental gas analysis (e.g. intense farming), automotive-, chemical- and medical industries. In order to monitor ammonia gas in these different areas there are some requirements that must be attended. These requirements determine the choice of sensor and, therefore, several types of sensors with different characteristics were developed, like metal oxides, surface acoustic wave-, catalytic-, and optical sensors, indirect gas analyzers, and conducting polymers. All the sensors types are described, but more attention will be given to polyaniline (PANI), particularly to its characteristics, syntheses, chemical doping processes, deposition methods, transduction modes, and its adhesion to inorganic materials. Besides this, short descriptions of PANI nanostructures, the use of electrospinning in the formation of nanofibers/microfibers, and graphene and its characteristics are included. The created sensor is an instrument that tries to achieve a goal of the medical community in the control of the breath’s ammonia levels being an easy and non-invasive method for diagnostic of kidney malfunction and/or gastric ulcers. For that the device should be capable to detect different levels of ammonia gas concentrations. So, in the present work an ammonia gas sensor was developed using a conductive polymer composite which was immobilized on a carbon transducer surface. The experiments were targeted to ammonia measurements at ppb level. Ammonia gas measurements were carried out in the concentration range from 1 ppb to 500 ppb. A commercial substrate was used; screen-printed carbon electrodes. After adequate surface pre-treatment of the substrate, its electrodes were covered by a nanofibrous polymeric composite. The conducting polyaniline doped with sulfuric acid (H2SO4) was blended with reduced graphene oxide (RGO) obtained by wet chemical synthesis. This composite formed the basis for the formation of nanofibers by electrospinning. Nanofibers will increase the sensitivity of the sensing material. The electrospun PANI-RGO fibers were placed on the substrate and then dried at ambient temperature. Amperometric measurements were performed at different ammonia gas concentrations (1 to 500 ppb). The I-V characteristics were registered and some interfering gases were studied (NO2, ethanol, and acetone). The gas samples were prepared in a custom setup and were diluted with dry nitrogen gas. Electrospun nanofibers of PANI-RGO composite demonstrated an enhancement in NH3 gas detection when comparing with only electrospun PANI nanofibers. Was visible higher range of resistance at concentrations from 1 to 500 ppb. It was also observed that the sensor had stable, reproducible and recoverable properties. Moreover, it had better response and recovery times. The new sensing material of the developed sensor demonstrated to be a good candidate for ammonia gas determination.O amoníaco é um elemento importante em muitas centrais elétricas e processos industriais, tornando-se extremamente importante a sua deteção na monitorização ambiental e para o controlo dos processos devido à sua alta toxicidade. O limite máximo de exposição é de 25 ppm para um limite de tempo de 8 h sendo que para 35 ppm o limite de exposição é drasticamente reduzido para apenas 10 min. Neste trabalho é apresentada uma breve introdução às características do amoníaco tais como suas propriedades físicas e químicas, os perigos na sua manipulação, as suas formas de produção e as suas fontes. Também serão indicadas as áreas de aplicação onde é importante e necessário a deteção do gás amoníaco sendo elas a monitorização dos gases ambientais (por exemplo, agricultura intensiva), as indústrias automóveis, as indústrias químicas e as indústrias médicas. Com a finalidade de monitorar as diversas áreas tem de se cumprir alguns requisitos, os quais irão condicionar a escolha do sensor a utilizar. Devido a esse fator vários tipos de sensores foram desenvolvidos com diferentes características, tais como, os óxidos metálicos, os de onda acústica de superfície, os catalíticos, os óticos, os detetores de gás que o fazem de forma indireta e os polímeros condutores. Todos os tipos de sensores serão descritos mas será dada maior atenção aos sensores modificados que utilizam a polianilina (PANI). Assim, serão descritas as suas características, formas de síntese, processos de doping, formas de a depositar, modos de transdução e a formas de adesão aos materiais inorgânicos. Será ainda incluída uma descrição das suas nanoestruturas, da técnica electrospinning usada na criação de nanofibras e microfibras e ainda também do grafeno tal como as suas características. O sensor criado procura ser um instrumento que vá de encontro com um objetivo da comunidade médica no controlo dos níveis de amoníaco presentes na respiração, sendo um método fácil e não-invasivo para o diagnóstico do mau funcionamento dos rins e/ou úlceras gástricas. Para isso, o dispositivo teria de ser capaz de detetar diferentes níveis de concentrações de gás amoníaco. Portanto, para este trabalho foi desenvolvido um sensor para a deteção de gás amoníaco utilizando um polímero condutor composto o qual foi imobilizado num transdutor de superfície em carbono (substrato comercial). O trabalho experimental realizado foi direcionado para a deteção de várias concentrações de gás amoníaco na escala ppb. As medições de gás amoníaco foram realizadas num intervalo de concentrações que vai de 1 ppb até 500 ppb. Após um pré-tratamento adequado do substrato, a área de trabalho dos elétrodos foi coberta por nanofibras de um polímero composto. O polímero composto, obtido através de síntese química, foi PANI dopada (H2SO4) com óxido de grafeno reduzido (RGO). Este composto foi a base para a formação de nanofibras através da técnica de electrospinning. As nanofibras vão potenciar a sensibilidade do material sensitivo. As fibras de PANI-RGO foram posteriormente depositadas no substrato comercial e, em seguida, procedeu-se à sua secagem à temperatura ambiente. Foram efetuadas medições amperométricas para diferentes concentrações de gás amoníaco (1 a 500 ppb). Foram também obtidas as características I-V dos sensores e foi realizado um estudo de interferência de alguns gases (NO2, etanol e acetona) na análise. As amostras de gás foram preparadas num sistema de configuração personalizada e as diluições realizaram-se com azoto gasoso seco. As nanofibras criadas a partir do composto PANI-RGO por meio da técnica de electrospinning, demonstraram uma melhoria na deteção de gás amoníaco quando comparado com as nanofibras preparadas só de PANI. Foi visível um maior intervalo de valores de resistência para concentrações de 1 a 500 ppb. Também foi observado que o sensor possui boas propriedades tais como a estabilidade, reprodutibilidade e capacidade de recuperação. Além disso, apresentou melhores tempos de resposta e de recuperação. O novo material sensitivo do sensor desenvolvido demonstrou ser um bom candidato para a determinação de gás amoníaco
    corecore